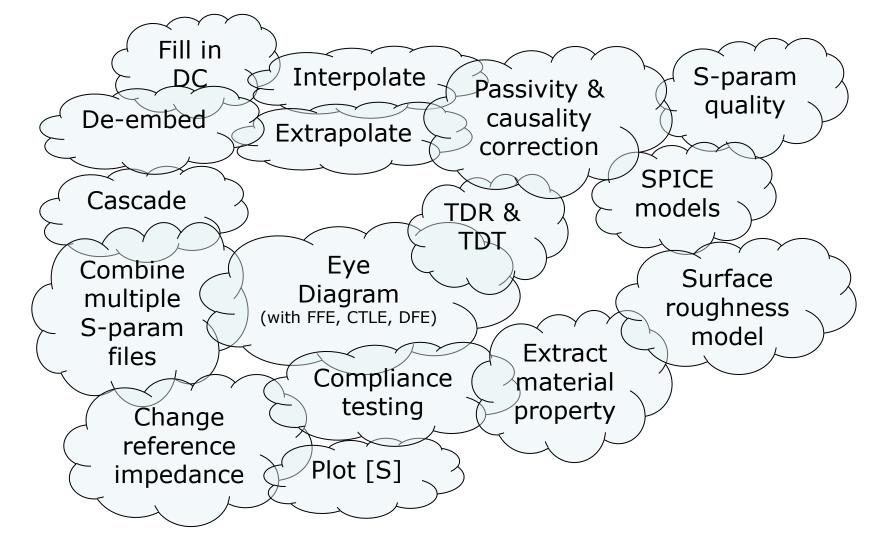
Advanced SI Design Kit (ADK)

Ching-Chao Huang huang@ataitec.com

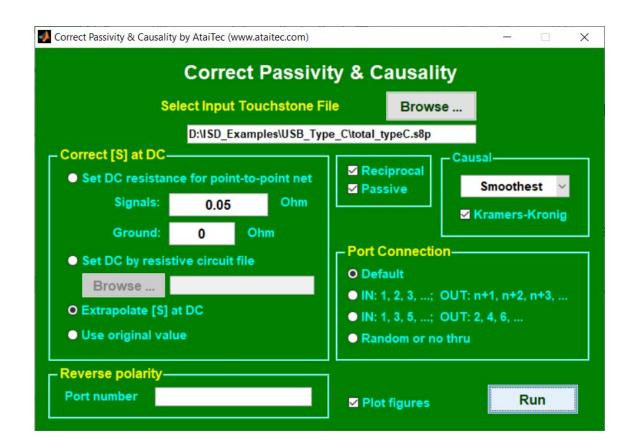
July 9, 2022



Outline

- Can SI tools be made like mobile apps?
- Advanced SI Design Kit (ADK)
 - Many mobile-apps-like SI tools in one place: causality correction, eye diagrams, TDR/TDT, compliance testing, DK/DF extraction, Delta L, Channel Operating Margin (COM), ...
 - Complex SI operations in ~3 mouse clicks.
 - Significantly increase productivity.
- Advanced 2D solver (X2D2)
 - Model DK, DF and roughness.

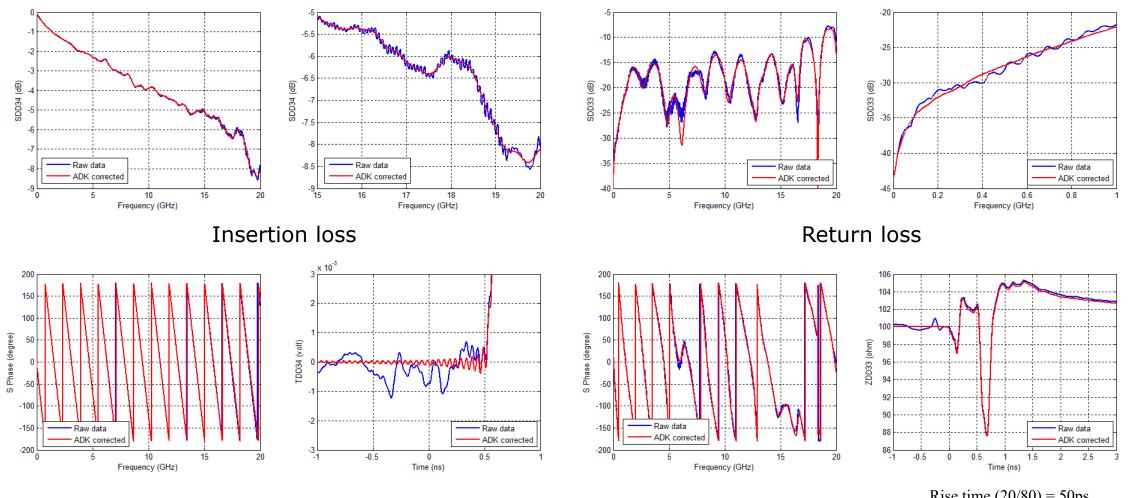
If it takes more than 5 seconds to do any of these, it is too long...


Advanced SI Design Kits (ADK) Many mobile-apps-like SI tools in one place

ADK by AtaiTec (www.ataitec.com) Help	- 🗆 X		
Advanced S	SI Design Kit Version 2022.05		
Interpolate	Find Connection & Skew		
Change Impedance	Passivity & Causality		
Extract or Re-order	Plot Multiple Curves		
TDR & TDT	[S] to Z0, T0, W-element		
x2D: 2D Field Solver	RLGC to [S]		
[S] to SPICE	SPICE to [S]		
Cascade [S]	De-embed [S]		
Combine [S]	Combine PEC and PMC		
Plot Eye Diagram	IEEE and OIF Spec.		
Channel Operating Margin	Extract 1X + 2X Traces		
Extract DK & DF	Compute Loss by Delta L		
Single to Mixed Mode	Mixed Mode to Single		
Change Reference Port	Condense Aggressors		
Scope to Spectrum	Batch		

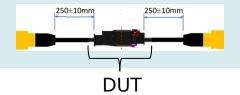
- Complex SI operations, from causality correction to eye diagrams, TDR/TDT, compliance testing, DK/DF extraction, Channel Operating Margin, ... in a few mouse clicks.
- Everything you want to do with S parameters in one place.
- Increase productivity.

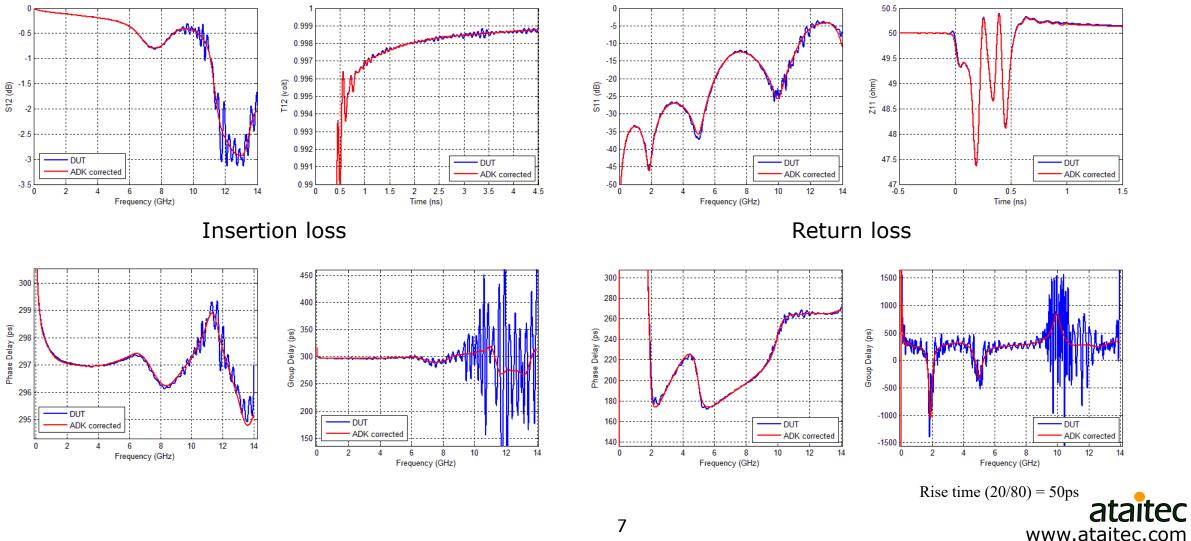
Passivity & causality correction *The only tool that can correct measurement error*


Proprietary algorithm to smooth S-param magnitude and phase and correct causality error for any noisy data.

- Popular vector-fitting method can only correct small error for simulation data.
- Multiple ways to fill in DC data.

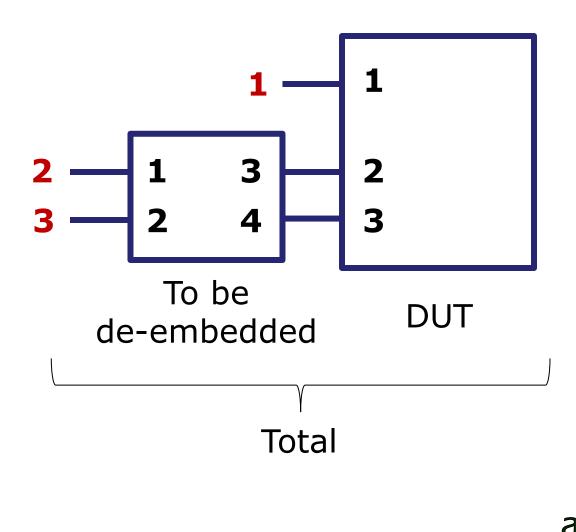
USB Type-C raw measurement


6


Rise time (20/80) = 50ps ataitec www.ataitec.com

SAE/USCAR-49 inline connector

S12 (dB)


ha

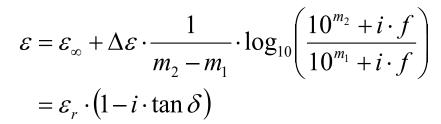
De-embed [S] The only tool that can de-embed arbitrary N ports from M ports

🧈 De-embed [S]	10-		×
De-embed [S	1		
Select Total Touchstone File	Bro	wse	
D:\ISD_Examples\Asymmetric\test.	s3p		
Select Partial Touchstone File	Brow	wse	
D:\ISD_Examples\Asymmetric\test.	s3p_left	DUT.s4	р
Location of Partial [S]			٦
 On the Left On t 	he Rig	ht	
O Specified Ports	2 3		
- Port sequence			-
O 1 to N on left; N+1 to N o	on right		
● 1, 3, 5, on left; 2, 4, 6, .	on riç	ght	
Output Reference Impedance	50	Ohm	_
	R	un	

PC

www.ataitec.com

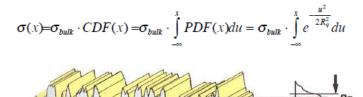
Robust DK/DF/SR extraction

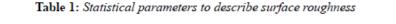

Extract DK, DF and Roughness Tools		
	Extract DK, DF and Rough puchstone File (Trace only) Browse):\ISD_Examples\DK_	DF_Extraction\Stripline_7in.s4p_DUT.s4p
Stripline (Homogeneous) 🗸	Top Ground Plane Wt td2	✓ Create new Touchstone file
Length = 2 inch From 0 to 100 GHz	wb td1	Length 2 inch Minimum Frequency 0 GHz Maximum Frequency 50 GHz
Cross section (in mil)	Roughness (Rq)	Number of Points 501
td1 4 td2 4.7 tm 0.7 pitch 10.910	Signal 0.3321 0.3 um Bottom ground 0 um Sigma 5.8e7 S/m	Reference Impedance 50 Ohm Simulate Only
wt 4.349 wb 4.349 Fixed	■ Fixed Rq DK & DF at 1 GHz	Auto de-skew
O Thickness ● Width ● All	DK 3.498 DF 0.000132: M1 10.504 M2 13.085	
* Optimized	Up	dated after Run
	■ Fixed M1, M2 ext	raction

- Interactive GUI
- Multiple templates
- Different roughness for each surface
- Simulate directly
- Huray model conversion
- Compatible HFSS models

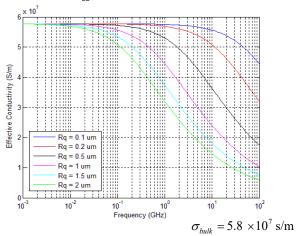
Causal dielectric model

- Wideband Debye (or Djordjevic-Sarkar) model
 - Need only four variables: ε_{∞} , $\Delta \varepsilon$, m_1 , m_2


 $\varepsilon_{\infty} = 3.35$, $\Delta \varepsilon = 0.15$, $m_1 = 10$, $m_2 = 14.5$



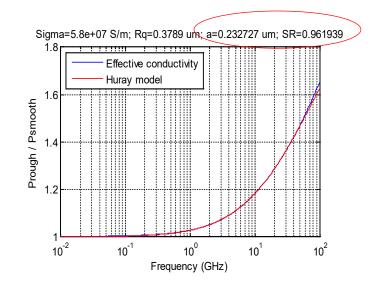
Surface roughness model


• Effective conductivity (by G. Gold & K. Helmreich at DesignCon 2014) needs only two variables: σ_{bulk} , R_q

Parameter	Description	Standard
R_q	root mean square	DIN EN ISO 4287
Ra	arithmetic average	DIN EN ISO 4287, ANSI B 46.1
Rk	core roughness depth	DIN EN ISO 13565
Rz	average surface roughness	DIN EN ISO 4287

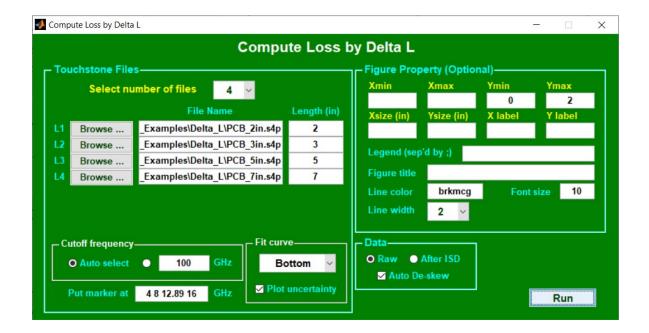
• Numerically solving $\nabla^2 \overline{B} - j\omega\mu\sigma\overline{B} + \frac{\nabla\sigma}{\sigma} \times (\nabla \times \overline{B}) = 0$ and equating power to that of smooth surface gives σ_{eff}

- ✤ Simple
- Work well with field solver
- Give effect of roughness on all IL, RL, NEXT and FEXT

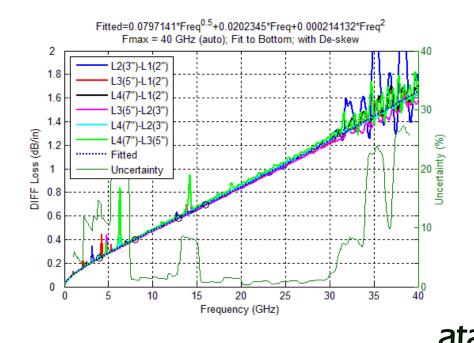


Convert effective conductivity to Huray model

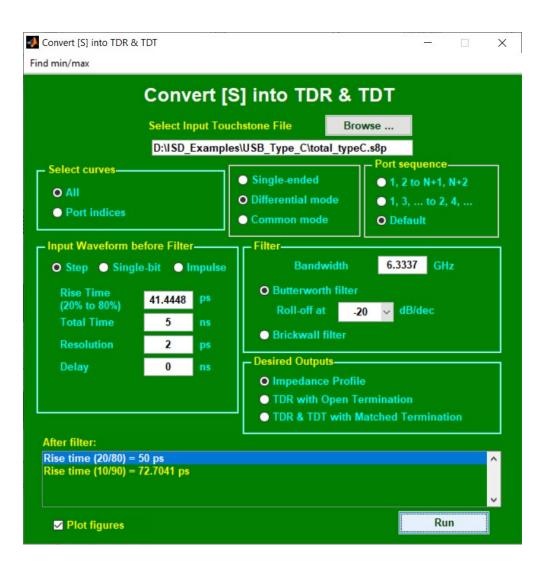
Huray model


$$\frac{P_{rough}}{P_{smooth}} \approx 1 + \frac{3}{2} \cdot SR \cdot \left(\frac{1}{1 + \frac{\delta(f)}{a} + \frac{1}{2} \left(\frac{\delta(f)}{a} \right)^2} \right)$$
$$\delta(f) = \sqrt{\frac{1}{\pi f \mu \sigma}} \quad ; \quad a = \text{radius} \quad ; \quad SR = \text{surface ratio}$$

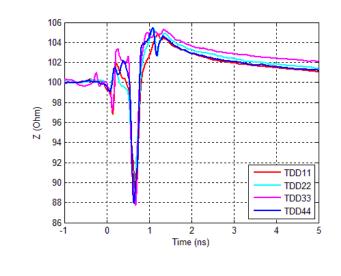
• Curvefit Prough / Psmooth to convert σ_{bulk} , R_q to a, SR



Compute loss by Delta L

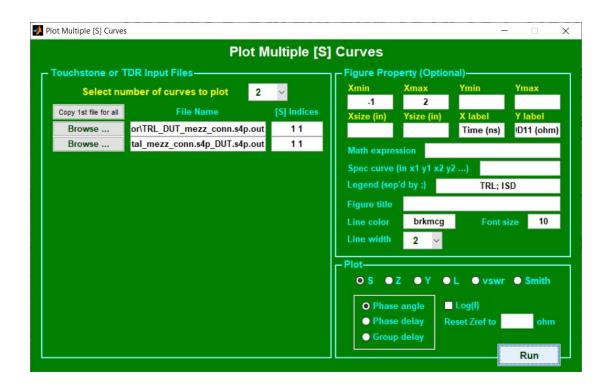


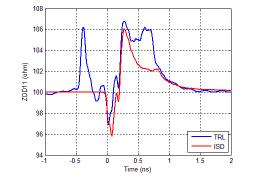
- Curvefitted equation for loss per inch with uncertainty
- Auto de-skew
- Fit data to bottom, middle or top

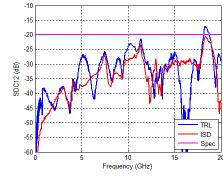


www.ataitec.com

[S] to TDR & TDT


- Built-in filter & IFFT.
- Single-ended, differential or common mode.
- Step, single-bit or impulse response.
- Correlated with TDR equipment.


14



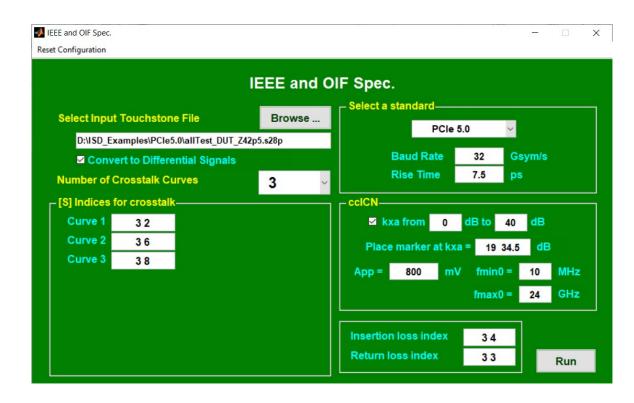
Robust S-param and TDR/TDT viewer

- Add math expression, spec curves, figure title/legend.
- Display delay or DK, VSWR, Smith Chart.
- Reset impedance.
- Flexible port index.

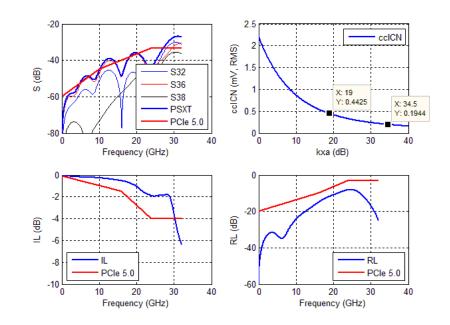
Plot eye diagram

NRZ

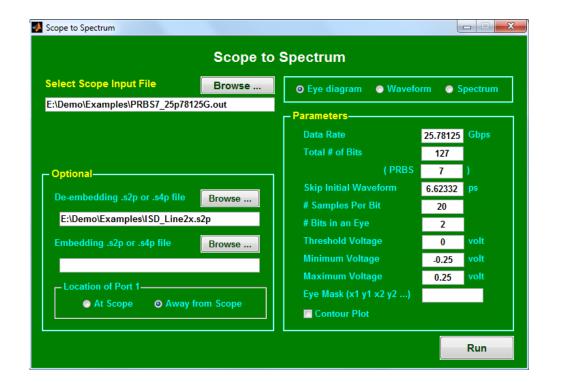
√olt


onfiguration						
		Channe	I Optimization	า		
annel's Touchston	ne File			Run Control		
Browse	D:\Demo\Exa	mples\ISD_SMA_to_S	MA.s4p	O Eye diagram 🛛 🔿 Wa	aveform 🔵	Spectrum
elected ports		DD 3 4 1 2				
eset port impeda	nce (optional)		ohm	# Bits in an Eye	2	
& RX				# Samples Per Bit	100	
aveform		- TX FFE		Shift Eye or Waveform	0	ps
aud Rate	10 Gbps	Optimized		Minimum Voltage	-0.6	volt
tise Time (20/80)	30 ps	# Precursors	1	Maximum Voltage		volt
mplitude (P-to-P)	1 volt	# Postcursors	1	Threshold Voltage	0.6	volt
C Offset	0 volt	Min. Main Curso	or 0.5	Eye Mask (x1 y1 x2 y2 .		
landom Jitter	0 UI	O Fixed Cursors	010			1.5
attern	[Contour Plot Re	ference BER	1e-5
O PRBS	12	- CTLE):\Demo\Examples\ISD_S	MA to SMA	ede ovo log
• Fixed	101010	O None		Inputs		supreyenog
# Repeated Patte	rn 2	Sweep GDC -1	0:1:0 dB	nput file = D:\Demo\Exar	mples\ISD_SM	MA_to_SMA
				Colorated posts - DD 2 4 4		
ianalina		_ DEE		Selected ports = DD 3 4 1 Data rate = 10 Gbps	2	
ignaling		- DFE		Data rate = 10 Gbps Rise time (20/80) = 30 ps	2	
O NRZ	PAM-4	# DFE taps	0 F	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps		
O NRZ O	PAM-4	# DFE taps - RX Filter		Data rate = 10 Gbps Rise time (20/80) = 30 ps		
O NRZ X Filter Butterworth Fil	PAM-4	# DFE taps - RX Filter O Bessel Filter	0 F	Data rate = 10 Gbps Rise time (20/80) = 30 ps Fall time (20/80) = 30 ps Amplitude (P-to-P) = 1 vo		~ ~
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	*
O NRZ X Filter Butterworth Fil	PAM-4	# DFE taps - RX Filter O Bessel Filter	0 F	Data rate = 10 Gbps Rise time (20/80) = 30 ps Fall time (20/80) = 30 ps Amplitude (P-to-P) = 1 vo DC offset = 0 volt	lt	> ?un
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	> tun
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 • None 25 GHz 4	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	tun
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 • None 25 GHz 4	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	tun
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 • None 25 GHz 4 0.5 0.4	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	kun
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 • None 25 GHz 4	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	lun
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None 25 GHz 4 0.5 0.4 0.3	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	lun
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None 25 GHz 4 0.5 0.4 0.3 0.2 0.1	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None 25 GHz 4 0.5 0.4 0.3 0.2 0.1	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None 25 GHz 4 0.5 0.4 0.3 0.2 0.1 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None 25 GHz 4 0.5 0.4 0.3 0.2 0.1 5 0 0.1 5 0 0.1	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None 25 GHz 0.5 0.4 0.4 0.5 0.4 0.2 0.1 0.1 0.2 0.1 0.2	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	
O NRZ X Filter Butterworth Fil Bandwidth	PAM.4 ter O None 25 GHz	# DFE taps - RX Filter O Bessel Filter Bandwidth	0 None 25 GHz 4 0.5 0.4 0.5 0.4 0.3 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Data rate = 10 Gbps Rise time (20/80) = 30 ps all time (20/80) = 30 ps implitude (P-to-P) = 1 vo DC offset = 0 volt	lt	

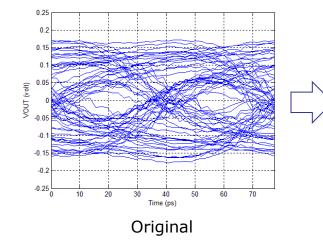
PAM4

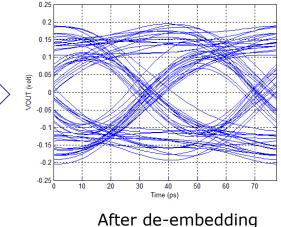

- [S] to eye diagram, waveform or spectrum.
- Single-ended, differential or mixed-mode.
- With or without NEXT and FEXT.
- With or without TX FFE, RX CTLE and DFE.
- Fixed or PRBS patterns.
- NRZ or PAM4

IEEE, OIF and PCIe Spec.

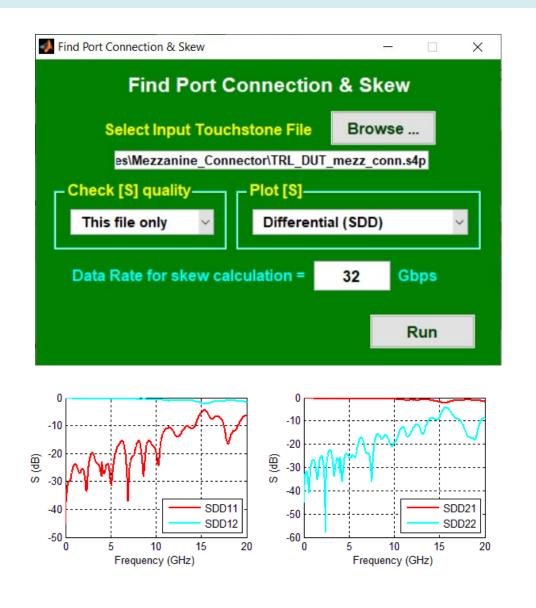


Compare IL, RL, crosstalk, ICR, ICN, ccICN with various compliance spec.



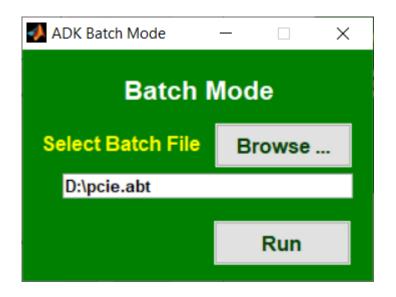


Scope embedding & de-embedding


- Plot scope data in waveform, eye diagram or spectrum.
- Embed and/or de-embed [S] from scope data.

Find connection

- Quickly examine [S].
- Identify from-to connection.
- Compute quality metrics.
- Compute delay and skew.


```
File name: D:\ISD Examples\Mezzanine Connector\TRL DUT mezz conn.s4p
 Total 800 points from 0.025 GHz to 20 GHz with 50 ohm Zref.
 Reciprocity metric = 99.04 %
 Passivity
             metric = 92.90 %
              metric = 62.48 %
 Causality
 Causality metric for each S(i,j):
   67.44
         84.47 64.01 89.27
   86.39
         73.68 89.13 62.48
         88.40 67.03 92.20
   63.05
         66.11 92.36 70.97
   89.08
  From-To Connections:
    Port 1 -> 3
   Port 2 -> 4
   Data rate set to 32 Gbps --
   L1: Median phase delay (1 \text{ to } 3) = 132.159 \text{ ps}
   L2: Median phase delay (2 \text{ to } 4) = 131.107 \text{ ps}
   Median skew (L1-L2) = 0.974904 ps
   Effective Intra-pair skew (EIPS: L1-L2) = 0.9157 ps
```

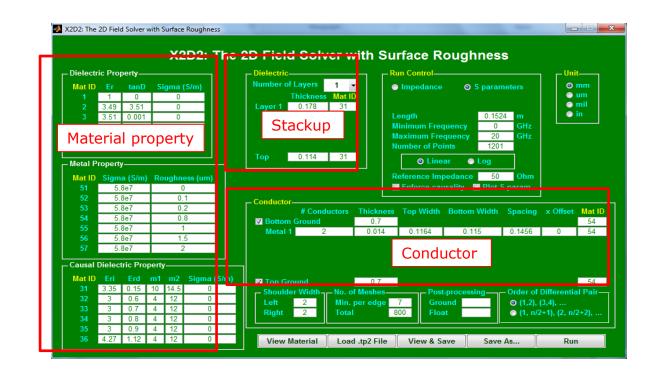
ataitec

www.ataitec.com

Batch mode

Run multiple jobs through batch file in GUI or command line.

"C:\Program Files (x86)\AtaiTec\ADK\adk2.exe" adkc D:\pcie.abt


 Most ADK functions are available through batch file.

<pre># standard infile D:\PCIeCEM5\allTest.s28p_Z42p5.s28p_DUT.s28p spec_no 7 differential 1 ccicn 1 il 3 4 rl 3 3 xtalk 3 2 xtalk 3 2 xtalk 3 6 xtalk 3 8 figure_tag ccICN_FEXT csv_tag ccICN_FEXT</pre>
<pre># passive infile D:\Demo\examples\ISD_SMA_to_SMA.s4p symmetric 0 causal 0 plot 0 dc_method 1 resistance 0.05</pre>
<pre># s2mix infile D:\Demo\examples\ISD_SMA_to_SMA.s4p_pass.s4p mixed 1 order 0</pre>

www.ataitec.com

20

X2D2 Advanced 2D solver for surface roughness modeling

- Accurate 2D BEM field solver with causal dielectric and effective-conductivity surface roughness models.
- Compute impedance, RLGC matrices and S parameters.
- Create Touchstone file and tabular W-element model

